翻訳と辞書
Words near each other
・ Reversible dynamics
・ Reversible error
・ Reversible Errors
・ Reversible Errors (film)
・ Reversible garment
・ Reversible hydrogen electrode
・ Reversible inhibition of sperm under guidance
・ Reversible inhibitor (acetylcholine esterase)
・ Reversible inhibitor of monoamine oxidase A
・ Reversible lane
・ Reversible process (thermodynamics)
・ Reversible reaction
・ Reversible reference system propagation algorithm
・ Reversible-deactivation polymerization
・ Reversible-deactivation radical polymerization
Reversible-jump Markov chain Monte Carlo
・ Reversibly assembled cellular composite materials
・ Reversine
・ Reversing
・ Reversing (vehicle maneuver)
・ Reversing drum mixer
・ Reversing Falls
・ Reversing Falls Bridge
・ Reversing Falls Railway Bridge
・ Reversing gear
・ Reversing thermometer
・ Reversing Time
・ Reversing valve
・ Reversion
・ Reversion (2015 film)


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Reversible-jump Markov chain Monte Carlo : ウィキペディア英語版
Reversible-jump Markov chain Monte Carlo
In computational statistics, reversible-jump Markov chain Monte Carlo is an extension to standard Markov chain Monte Carlo (MCMC) methodology that allows simulation of the posterior distribution on spaces of varying dimensions.
Thus, the simulation is possible even if the number of parameters in the model is not known.
Let
:n_m\in N_m=\ \,
be a model indicator and M=\bigcup_^I \R^ the parameter space whose number of dimensions d_m depends on the model n_m. The model indication need not be finite. The stationary distribution is the joint posterior distribution of (M,N_m) that takes the values (m,n_m).
The proposal m' can be constructed with a mapping g_ of m and u, where u is drawn from a random component
U with density q on \R^(m,u),n_m') \,

The function
:
g_:=\Bigg((m,u)\mapsto \bigg((m',u')=\big(g_(m,u),g_(m,u)\big)\bigg)\Bigg) \,

must be ''one to one'' and differentiable, and have a non-zero support:
: \mathrm(g_)\ne \varnothing \,
so that there exists an inverse function
:g^_=g_ \,
that is differentiable. Therefore, the (m,u) and (m',u') must be of equal dimension, which is the case if the dimension criterion
:d_m+d_=d_+d_ \,
is met where d_ is the dimension of u. This is known as ''dimension matching''.
If \R^\subset \R^=d_ \,
with
:(m,u)=g_(m). \,
The acceptance probability will be given by
:
a(m,m')=\min\left(1,
\fracf_(m')}(m,u)p_f_m(m)}\left|\det\left(\frac\right)\right|\right),

where |\cdot | denotes the absolute value and p_mf_m is the joint posterior probability
:
p_mf_m=c^p(y|m,n_m)p(m|n_m)p(n_m), \,

where c is the normalising constant.
== Software packages ==
There is an experimental RJ-MCMC tool available for the open source BUGS package.
==References==


抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Reversible-jump Markov chain Monte Carlo」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.